Using |L ock’s Java Authentication and Authorization Service (JAAS)
for Governance-Based Access Control (GBAC) in Healthcare

September 2005
www.2ab.com

Introduction

Access management is asimple concept. Every business has information that needs to be protected from
unauthorized disclosure. To protect information, companies define policies - often mandated by legislation
- that govern who can access specific classes of business and/or personal information. For example, if a
pharmacist seeks to access clinical data (such as medications) related to a person for whom they are filling
a prescription, they should have authorization to do so, however, they should not be authorized to access
the same information about a co-worker. There are many written policies (often laws) related to disclosure
of broad classes of clinical and personal information. But, often, individual datais not specifically
classified within electronic patient record systems. Today, most requests for patient information flows
through individuals within a provider or payer organization; the access policy that governs release of the
information is enforced only because human beings are skilled at generalizations; that is, they are able to
classify an ad hoc request for a particular piece of information about a patient and make a decision about
whether or not it should be released to the requestor.

Access Management software hasasimple goal. It alows the human who previously acted as a guardian
of sensitive information to be removed from the process without |oss of access control. This sounds
simple, but most providers and payers are struggling with the implementation of access management as
they integrate and extend their clinical and administrative applications. Thisis because machines cannot
classify information or make access decisions unless they are explicitly programmed with algorithmsto
accomplish this. When you take the responsibility for access decisions away from human beings, it
becomes necessary to insert software guards into your applications.

Most companies now have governance councils that ensure that they are in compliance with legislated
requirements. To do this, sensitive information must be classified. 1n addition, the people who may need
access to the information need to be grouped (or assigned roles) for the purpose of establishing consistent,
auditable access policy. One company who assists health organizationsin this effort - CGI - has recently
released a whitepaper, " Governance-Based Access Control: Enabling improved information sharing that
meets compliance requirements,” introducing a new model for access control. This model, called
Governance-Based Access Control (GBAC), isfocused on the classification of information assets for the
purpose of information sharing in an environment where;

» Many organizations may require access to information
» Information may be accessed by, or shared with, external users
» Everyone may be subject to compliance with multiple authorities and jurisdictions

In a previous whitepaper, "Using jLock's Java Authentication and Authorization Service (JAAS) for
Application-Level Security," we described a systematic approach to using JAAS to manage the complexity
associated with software access management. We explained the JAAS service-oriented architecture
(SOA), which maintains a clean separation of concerns between application functionality and access
management, and discussed the types of JAAS features that a scalable JAAS implementation should
support.

In this whitepaper, we explore Governance-Based Access Control (GBAC) concepts using scenarios from
the healthcare domain. We show how jLock, 2AB’s commercial JAAS implementation, can be used to
support the complex rule requirements of the Healthcare GBAC model. We hope this paper and the
demonstration programs will help you understand how JAAS can be leveraged for access management.

1
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

What is the Java Authentication and Authorization Service?

The Java Authentication and Authorization Service (JAAS) defines the standard programming interface for
building these software guards in a Java environment. Prior to JAAS, security mechanismsin Javawere
strictly code-based. That is, you granted permissions based on the code that was running — there was no
way to grant permissions based on the identity (or credentials) of the user of the application. For this
reason, any user-based access control mechanisms had to be coded directly into the business application
(typicaly requiring new database tables and/or directory infrastructure). When access policy or audit
requirements changed, application software had to be modified, tested and redeployed. Additionally, when
access policy needs to be examined, or applications audited for conformance, a code review was required.

Access management solutions, such as commercia implementations of JAAS, provide scalable alternatives
to the costly embedding of access control mechanisms and access policy. They allow application software
guards to leverage services that enable access policy to be modified, tested and deployed dynamically
without application code changes. This enables your devel opers to concentrate on providing business
software. Access management sol utions efficiently enable high performance access controlsin distributed
environments while allowing centralized management of access policy. Any commercial access
management sol ution includes application programming interfaces (APIs) and policy management tools.
JAAS defines these APIs for the Java environment.

Application security must address any security-related requirements not provided by the runtime security
infrastructure. In the area of access management, any requirement to restrict a) the usage of application
features or b) access to business and personal information is part of “application security.” Often, these
restrictions on access to sensitive information are based on legislation. For this reason, the Governance-
Based Access Control Model is being progressed as a means to classify information for the purpose of
assigning access policy. The CGI whitepaper, "Governance-Based Access Control (GBAC)," provides an
excellent overview of this model and is the basis of the examplesin this whitepaper.

There are many excellent overviews of JAAS on Sun’s JavaSoft Web site. For that reason, we will assume
the reader has some familiarity with the JAAS model, and we will focus on how the JAAS model can be
leveraged to provide the fine-grain access control requirements of “application security” in an environment
that uses the Governance-Based Access Control (GBAC) model.

JAAS consists of two parts: Authentication and Authorization

e Authentication answers the question: “How do | know that you are who you say you are?” The
goal of authentication is to securely determine who is executing Java code, regardless of whether
or not the code is part of a standalone Java application, a servlet, an applet or an Enterprise Java
Bean.

» Authorization answers the question: “Now that | know who you are, how do | know if you are
allowed to access the information or application feature that you are requesting?’ The goal of
authorization is to protect business and personal information and sensitive application features
from being used by people who legitimately have access to the application and some subset of its
functionality.

There are anumber of papers from various sources that focus on how to build an implementation of JAAS.
These papers explain in detail the concepts, design center and classes that are used in a JAAS
implementation. The classes include LoginContext, LoginModule, CallbackHandler, Subject, Principal,
Permission and AccessController. We will discuss those conceptsin this paper as they become visible to
the Java programmer but will not discuss details of their implementation. This paper will focus on how a
Java developer uses acommercial implementation of JAAS in conjunction with the GBAC model. We will
introduce the jLock AccessManager which extends the JAAS model to support the context-sensitive policy
requirements of GBAC. We will also explore how user identity and access policies are managed using
jLock Security Center administrative tools. We will outline the steps you need to take to usejLock's JAAS
with the GBAC model.

2
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of Information

The classification of information assets based on Governance attributesis a key concept of the GBAC
model. Each classification of information is mapped to a JAAS resource or Permission. In the Java
Authentication and Authorization Service (JAAS) specification, thisisaunique string. Y ou would create
resources for each possible classification that needs to be protected using the CreateResour ce Editor as
shown below.

We are using generic classifications in this example; in

CreateResource reality you might use terminology from a medical
vocabulary.
@ MewResource
| Hiv| | A unique string would need to be defined for each
information classification. Asyou will seelater, you
I Ok l [Cancel] can specify operations (such as "order" or "results") to

further classify the information asset.

In addition to using the graphical user interface, classifications may be entered programmatically or via
scripting.

We also support a more complex naming scheme if you want to give each classification afully qualified
structural name. This might be useful if using medical vocabularies to classify information. To do this,
you would use the OMG’s Resource Access Decision (RAD) facility naming scheme. For some
applications, the complex naming is easier to understand. Here we will simply use JAAS permissions
which are strings.

£« iLock Administrative Tool

File Wiew Preferences Help

_ivieh Besources || CiC++ Resources Resuurces| Default Resource Operations |
Jags Resources |

[Mewy Operation] [Delete Operation]

E

S
f CBC 1 DefautOperations
f Confidertislnto ACCesE

f Detnographics
= Hv

3 PD#1111144
¥ PiD#2222222 =

EEEEHBB

Security Center Connection Instance=cpr

Viewing the GBAC Information Classifications as JAAS Resour ces

This user interface is designed to precisely match the Java Authentication and Authorization Service where
Resource Permissions are defined as a string. We extend JAAS to allow multiple operations on a Resource.
For example, for alab tests, you may set your operations as "order" and "reviewResults." For demographic
information, the only operation may be "access."

3
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of People Who May be Required to Access Information

The classification of peoplein GBAC is based on roles. Theseroles are defined by the healthcare
organization. In the Java Authentication and Authorization Service, aroleis atype of Principal that may
be assigned to Subjects or Groups. The following shows the roles used in this demonstration.

#+ iLock Administrative Tool

File “iew Preferences Help

|_|_'|_‘3'3r3 | Groups | Roles | Refresh] [Mewr Role

i) AttendingPhysician & -

400 Confidential_Clesrance AttendingPhysician =
i EmergencyCareProvider Confidential_Clearance F
400 ErmergencyRecordProvider EmergencyCareProvider

4 MedicalTechnician EmergencyRecordProvider

W Nurse |Medical Technician

400 Patient MU S

a0 PatientAuthorizedfcoessor | o o

w9 Payer PatientAuthorized Accessor —
508 PhysicalTherapist Payer

& Physician — PhysicalTherapist

s | Phrysician e

Security Center Connection

Ihstance=cpr

Examples of Healthcare Roles

Groups can also be very useful, and roles may be assigned to Groups as shown below.

#+ iLock Administrative Tool

File “iew Preferences Help

| Users | Groups | Roles |

@ Groups

83 Admissions
82 Es1

LS Wedicslert
[Lj Roles
84 Payert

B4 Payerz
B4 PhysicianGroup?
B4 PhysicianGroup?
A3 Provider

A2 Provider2

0E®

2 e T

Group © Medictlert | Resources for Group : MedicAlert |

Uzers Available Uszers

Eianks, Bill - bhbanks
Burt, Caral C - churt
John=on, Joel - jjohnson

¢ 5

Goldfinger, George - ggol

E

v

Raoles Avgilable Roles

EmmergencyRecordProvider

AttendingPhysician

Confidential_Clearance

EmergencyCareProvider
MedicalTechnician
< @

fi |

Security Center Connection

Ihstance=cpr

Assigning rolesto groups

Emer gencyRecor dProvider rolewill be assigned to anyonein the Group MedicAlert

4

Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Of course, you will also need to define Users. The Identity Manager in jLock aso allows you to create
users and assign passwords. Password format requirements can be set using the Prefer ences menu. We
can use the Identity Manager User stab to assign rolesto our users. For this demo, we assign roles as
follows: Bill BanksisaPhysician, Ed Harris is an EmergencyRecordProvider (because of association with
group MedicAlert) and Nancy Nurse is a Nurse and an EmergencyCareProvider.

£« iLock Administrative Tool

File ‘iew Preferences Help
Uszers | Groups | Roles | User : bbanks | Resources for User : bbanks |
(d User [7] A0 Last Miclclle First
d & o
ERF LIS | Banks | | || Eil |
= 3 Banksz, Bill - bbhanks:)
= qﬂ Groups Uzer D Ciptional Data
88 PhysicianGroupt = | hhanks | [Feset Passyward] | hbanks@phygruup|
= {hRoles
204 Physician Groups AvailahleGroups
.a. Burt, Carol C - churt Phry sicianGroup Admissions 2
[d cm E911 =
Id o [|Medicaler r
E[0
EFEU} Roles AyailableRoles
=i ﬁ GH] Phry sician .ﬂ«ﬁendingF‘hysician s
a Goldfinger, George - ggole ¥ Cl:nnfidential_CIearance v
| > (& ¢ | 5

Security Center Connection

Instance=cpr

Bill Banks hasthe Role Physician and isin the Group PhysicianGroupl

#« il ock Administrative Tool

File View Preferences Help

| Users | Gru:uups| Roles | Role : Physician | Resources for Role ; Physician |
2} MedicalTechnician A || ||U=zers

20 Murse Banks, Bill - bhanks

L Patiert Galdfinger, George - gaoldfinger
24 Patienttuthorized Accessor Johnzon, Joel - johnzon

53 Payer Maweay, Oho - chonowway

208 Physical Therapizt Groups

.

204 PrimaryCarePhysician

208 Provider L3

2 WIP_Clearance w

Security Center Connection

Ihstance=cpr

The Role view allowsyou to see who isassigned a Role

5

Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Definition of GBAC Rules for Information Access

Access Control rules may be defined in Governance-Based Access Control (GBAC) based upon the roles
of individuals, relationships between the requestor and the information source (i.e. attending physician)
and/or the context within which information is requested (i.e. emergency). Theseruleswill haveto be
defined for each health organization.

By selecting a Resource (information classification) operation, you can modify the policy as shown below.
Note that jLock allows you to specify rules for different operations on Resources. For example, you see
below that there are order and reviewResults operations on the HIV resource. These operations can be
customized for each Resource (class of information).

£« jLock Administrative Tool |Z||E| E'

Filz “iew Preferences Help

Welk Rezources CIC++ Resources | Izer= for Oneratinon - revieswREesits
Jaaz Resources | Operation : revieswResults
|4 Resources [O Derw a0
3 CBC
3 Corfidentialinfo O sllow Al
3 Demographics) Deny List
= @ _ (%) Aoy List
=] q:.} arder - Sllowy List
204 Role - EmergencyCareProvio
204 Role - MedicalTechnician Allovwed zers Availablelsers
¢ Rale - Murse li Banks, Bill - bbanks | #
wo¢ Role - Physician Burt, Caral C - churt | o
= ezults - Allov List =
£ | >
1o Role - EmergencyCarePravic 2 -
na . AllovwwedGroups AvailahleGroups
¢ Role - Physician = 4 [=
= 39 Po#1111111 |_5F_Jadmissions =
= q:.} access - Allow List Egﬂ_
83 Group - Admissions m |MedicAlert w
400 Role - AttendingPhysician AllovwedFoles AvailableRoles
14 Role - Emergency CarePravic ErnergencyCareProvider BE | AttendingPhysician -
S F‘I_I?_I#2222222 o || ||PHyzician Cn:nnfidential_CIearann::I 3
< [(=» J& | B
Security Center Connection Instance=cpr

Because GBAC often requires decisions to be based on context or relationship-based information that can
only be evaluated at the time of the access request (as it may change dynamically), our demonstration will
make use of a dynamic attribute service. Dynamic attributes are "groups' or "roles’ that are assigned
dynamically to a user at the time of the access request. For example, there may be information that is
provided to an "attending physician” that is not available to other healthcare workers (even if they are
physicians). In this demonstration, physicians will be provided a view that only includes the patients for
which they are the attending physician. The access policy for patient information is based on the
AttendingPhysician role. Thisroleisdynamically associated with the physician at the time of the access
request. Because dynamic attribution of roles and/or groupsis a part of the access management service,
they are easily audited and maintained separate from the business application. Access policy remains
simple, easy to understand, administer and audit.

6
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using JAAS Authentication as Part of a GBAC Solution

JAAS authentication is based on the Pluggable Authentication Module (PAM) architecture. Leveraging an
architecture that supports ‘plug-ins for authentication ensures that Java applications can be independent of
the underlying authentication mechanism. This has the advantage that new or revised authentication
mechanisms can be plugged in without modifying the application code. That is, management of User IDs
and Passwords (or other methods of authentication) are removed from the application’s concern. For this
example, we will leverage the dialog-based User ID and Password authenticator that is supplied with the
jLock product.

Thefirst thing you need to do is specify the JAAS implementation that you are using. Thisisdone with a
login configuration file. This may be done on the command line when you invoke your application.

java -Djava.security.auth.login.config=config.txt ...
Thejaas _config.txt file, supplied with the example, is shown below. It specifies an application name

(JaasDemo) and the jLock plug-in class for the LoginModule. We are also specifying the instance name of
the Security Center repository that holds identity and policy information.

/** Login Configuration for the GBAC JAAS Demo Applications **/

JaasDemo

{
h

com.twoab.jaas.LoginModuleUP required instance="cpr";

JAAS Login Configuration File (jaas_config.txt)

Thisisthe Java code for aclassthat prints “Hello iLock World” if user authentication succeeds. The two
JAAS methods your application needs to invoke to use a JAAS authenticator are shown in bold font.

public HelloJAAS() {
LoginContext Ic = null;

/** Create a LoginContext object. */

try {
lc = new LoginContext("JaasDemo", new DialogCallbackHandlerUP());

} catch (LoginException le) {
System.out.printin("Cannot create LoginContext. " + le.getMessage());
System.exit(1);

} catch (SecurityException se) {
System.out.printin("Cannot create LoginContext. " + se.getMessage());
System.exit(-1);

}

try {
Ic.login();

catch (LoginException le) {
System.out.printin("\nAuthentication failed:");
System.out.printin(" " + le.getMessage());
System.exit(1);
}
System.out.printin("\nHello iLock World\n"); ...

JAAS Authentication Code Sample (HelloJAAS.java)

That isall the code and configuration you need! When you run the example (runHello.bat), at the point
where the Ic.login() is called, the following dialog will appear.

7
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

£ |D J Password §|

User ID

|hhank5

Password

— |

OK Cancel

TypeinaUser ID and Password as shown above and click OK. jLock will authenticate the user.

Assuming you typed avalid User ID and Password, the example program results will, as you might expect,
look like the following:

et ilockdemos
C:swilocksdemos~jaas~CPR_GBAC_JAAS >runHello

Hello iLock World?

Authentication Succeeded

Of course, if you should fail to provide avalid User ID and/or Password, you will seethis:

e+ ilockdemos
C:“iLock“demos*jaas“CPR_GBAC_JAAS >runHello

Authentication failed:
Login Failure: all modules ignored

Authentication Failed

The HelloJAAS demo program has obviously written no Java code to manage Users or Passwords, or to do
the work required to authenticate the user (in this case verify the password). That isthe great thing about
the JAAS architecture; just “plug in” jLock, and it securely manages all that for you! jLock also ensures
that the password is never availablein clear text. jLock securely stores and transmits password information
- even if you are not using an encrypted transport protocol.

8
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Now we are ready to explore JAAS authorization. To understand the JAAS Authorization model, you must
first understand alittle more about what happens when you authenticate using JAAS. When the user
(bbanks in the example above) was authenticated, a Subject object was created. A Subject represents the
entity that was authenticated — that is, the entity that has been able to prove their identity. A JavaPrincipal
isa“security attribute” or “credential” that can be associated with one or more Subjects. During the
authentication process, the jLock authenticator acquired the credentials of the Subject and associated them
with the subject by creating the appropriate Principal objects. A user (i.e. Subject) may always be ableto
prove their identity, but their credentials (i.e. Principals) may change over time. For this reason, security
access policy is defined in terms of the security attributes (or in Java terminology Principals) that are
associated with the Subject at the time identity was authenticated. jLock supports three types of Principals:
1) AccessldPrincipal, 2) RolePrincipal and 3) GroupPrincipal. These map to the Userlds, Groups and
Roles shown in the Identity Manager. These are the fundamental building blocks of access policy. Inthe
section above, you can see that the user, Bill Banks, has the following jLock security attributes.

* Accessld: bbanks
* Role Physician
* Group: PhysicianGroupl

If you add the following code to the example, you can see that the LoginContext allows navigation to a
Subject that manages a set of Principals.

java.util.Set prin_set = Ic.getSubject().getPrincipals();
java.util.lterator it = prin_set.iterator();
while (it.hasNext() == true) {
java.lang.Object obj = it.next();
if (obj instanceof AccessldPrincipal) {
System.out.println("Accessid - " +
((AccessldPrincipal)obj).getName());

else if (obj instanceof GroupPrincipal) {
System.out.printin("Group - " +
((GroupPrincipal)obj).getName());

else if (obj instanceof RolePrincipal) {

System.out.printin("Role - " +
((RolePrincipal)obj).getName());

}

else {
System.out.printin("Unknown principal type");

}

}

Codeto display the names of the Principals associated with the authenticated Subj ect

Running with this code, you will see the output below following authentication:

et jlockdemos

JAAS Principals:
Accessld — AUTHENTICATED
AccessId - PUBLIC
Accessld — uid:bbanks
Group — PhysicianGroupl
Role — Physician
C:~iLockdemos*jaas“~CPR_GBAC_JAAS >

9
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Extending JAAS Authorization for CPR GBAC

The JAAS Authorization model extends the code-centric, Java security architecture that uses a security
policy to specify what accessis granted to executing code (such as access to files, sockets or specific
operations). The extension allows security access policy to be defined based on the credentials associated
with the user of the code. Just asa commercial JAAS Authentication may be plugged in, the JAAS
Authorization model also allows vendors to offer commercial solutions that offer scalability, management
and enhanced support for sophisticated access policy.

There are limitationsin the JAAS Authorization model in Sun's reference implementation. For example,
Sun’ s reference implementation requires that grant statements that define access policy be placed in policy
files for each user and that the application use the Java Security Manager (in the same way that grant
statements and policy files are used for code-centric security). Sinceit obvioudly isnot practical (or
secure) to manage user-based access policy in local, plain-text files for alarge user community, JAAS
providers such as 2AB offer solutions that allow identity and access policy to be managed separately from
the application. Sun’s reference implementation also requires that any code that requires user-based access
control be placed in a separate class and executed only via Subject.doAs (or doAsPrivileged) methods.
That sets the scope of the user-based software guard to the class where the sensitive code is located. jLock
does not preclude the use of the do.As operations for access management but does support the insertion of
software guards that use the JAAS Principal-based authorization model without the requirement to segment
the code into separate classes. Notice that while we can certainly run this application with the Java
Security Manager installed (adding afew permissions to the java.policy fil€), this demo does not require
the Security Manager to leverage the jLock JAAS features. Y ou simply insert your sensitive code in atry
block and check for the appropriate permission before running it. Remember, you are not checking
whether the code has access to the resource, you are only checking whether or not the application should
provide the resource to the user.

jLock supports the use of the JAAS AccessController for checking access permissions and also provides a
more powerful AccessManager that enables relationship-based and context sensitive policesto be
supported. Note that after the user has authenticated, it is still necessary to determine if the user has
permission to access patient information. The code snippets below show use of the AccessController and
the more powerful AccessManager (which allows custom actions such as "order" and "reviewResults.")

String gbac_class = new String("Demographics");

try {
ResourcePermission p = new ResourcePermission(gbac_class);
AccessController.checkPermission(p);
System.out.printin("Access to " + gbac_class + " Info is granted");

}

catch (com.twoab.jaas.AccessControlException ace) {
System.out.printin("Sorry - Access to " + info_class + " Info is denied");

}

Codeto protect accessto the “ Demographics’ information
using a JAAS AccessController

String gbac_class = new String("HIV");

JaasResource jr = new JaasResource (gbac_class);

if (am.accessAllowed(jr, "reviewResults", Ic.getSubject())) {
System.out.printin("Granted access to " + jr.toString() + " Info");

} else {

}

System.out.printin("Denied access to " + jr.toString() + " Info ");

Codeto protect accesstothe“HIV” lab results
using a jL ock AccessM anager with custom oper ations

10
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

A Patient Record Demonstration

Next, we want to show how you might build an application that integrates patient demographic and clinical
data while only displaying the information that a user is authorized to view. We call this demonstration
program the “County General - Patient Record System.” The source code for the demonstration program
below isfreely available.

When Bill Banks, a Physician, logsinto the system, a custom view of patient information is generated.
Note that heis only allowed to view information that he is authorized to see. That is, there may be
information in the database, based on the GBAC rules, that he is not authorized to view. The portal
dynamically constructs the user view based upon the results of consultation with a GBAC access controller.
To change the information available, no code is written — the GBAC rules are simply changed using the
graphical administration tools provided to the security administrator.

- County General - Patient Record System E|@|E|
Eill Banks= Attending: Bill Banks Thu Sep 29 09:49:03 COT 2005
I PATIENTS Patient: Jane Doe; PID#2222222
= || FIDAGEEEEEE =
CEC | Witsls | Demographics
= _| Jane Doe TEMP: 92 & Blood Preszure: 110075
® B Wizight: 135 Allergies: PEM
. eI ergies:
Test: HY
Test Fesuft Unit= Reference Range
HI% Megative P72, Pozitive-Megative

Information Authorized for Bill Banks, a Physician

Here isthe line of code (Guard) that is inserted into the application to determine whether or not to display a
patient in the tree. A similar access control check is made on each document type to determine the
information to display under the patient. In thisway, the access policy remains separate from the
application and can be modified dynamically using the policy administrative tools shown earlier in this

boolean view = true;
view = am.accessAllowed(patient.toResource(),operation,Im.getSecurityAttributes());

Codein prototypeto determine whether or not a patient can be viewed by the user

11
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Below we see the same portal when Nancy Nurse, anurse, islogged in. Notice that the nurse has access to
more patientsin her view as she may be assisting multiple physicians. If you select test results for a
patient, however, access to those results may be restricted. For example, the nurse can see that an HIV test
has been ordered, but is not allowed access to the results.

- County General - Patient Record System |'._||'E|rz|
ancy Murse Attending: Bill Banks Thu Sep 29 10:05:34 COT 2005
[1 PATIENTS Patiert: Jane Dos; PID#2222222
=] Tommy Jones =
CEC | Witals | Demographics
= _| Eilly Bok TEMP: 95 5 Blood Preszure: 110075
@ CBC \Weight: 135 Allergies: PEM
=[] Tarzan KOJ =it ErLIes.
CBC
= || FID#EEEEERE
CBC Test: CBC
=58 JaneDe Test Resut Units Reference Ranoe
BT 2.2 Thousich.mm 3.9-1141
® HY RBC 3510 Milicu.rm 4.20-5.70
) HZE 145 ol 13.2-1689
= JPID#1111111 |HCT 41.2 Percent a38.5-49.0
b 117H Fl a0-a7
® CEC MCH 41 4H it 275335
* Hv MCHC 353 Percent 32.0-360
RO 118 Percent 11.0-150
PLATELET COUMT 172 Thausrcu mm 140-390
bR TE 1l T5115

Patient View based on authorization for Nancy Nurse, a Nurse

County Generall - PRS

Q PERMISSICN ERROR: You do not have permission to wiew this document,

M essage received when Nancy Nursetriesto view HIV results

Y ou may have also noticed that some of the patient names are not shown (they are identified only by a
PID#). The AccessManager is also consulted regarding whether or not to display patient names on the
graphical user interface.

if (patient.isVIP()) {
vip = am.accessAllowed(vipResource,operation,Im.getSecurityAttributes())
......... set up name or id in display based on access decision

Codein prototypeto decide whether or not user isallowed to view a patient name

The CPR application uses the access manager as a software guard to provide access decisions before
displaying any information related to patients. The policy is easily administered using tools that are simple
to use and easy for business people to understand.

12
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Summary

In this paper we have outlined how the jLock JAAS service can be used to implement a Service Oriented
Architecture for application-level security that meets the unique requirements of Governance-Based Access
Control in Healthcare.

The trend towards a service-oriented architectural approach to dealing with application-level security is
evident in recent analyst reports. For example:

META Group predicted in late 2003: “ as businesses begin to put more focus on
design for application securability and service oriented architecture, application-
specific security mechanisms will migrate to infrastructure.”

A JAAS implementation such as jLock provides APIsthat enable you to authenticate and easily integrate
access control checks within your business applications. JAAS supports a pluggable architecture that
allows you to select your JAAS vendor based upon your requirements for authentication and access policy
support.

Utilizing JAAS, your business developers simply insert AccessController or AccessManager calls
(Software Guards) at the points in the software where sensitive resources are exposed. This Guard consults
with the jLock Access Manager who evaluates the policy and advises the Guard on allowing access.

~~ Application E
, _ e)

The JAAS architecture enables many different policy models to be leveraged by a Java business
application.

JAAS supportsa service-oriented architecture for authentication and authorization

13
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Challenge 2AB!

Areyou still not sure if jLock can help with your Governance-based access control requirements?
Challenge usto proveit. Send us four or five examples of your access management requirements. We'll
configure jLock with policies you can use and send you an evaluation copy of jLock, complete with a
working demo so you can see how to leverage jLock within your application. We'll even send you the
source code for the demo so your development staff can take alook at exactly how little we had to do to
insert aguard! Go ahead... challenge us. What have you got to lose — an increasingly difficult access
management problem?

2AB, Inc.
1700 Highway 31
Cdera, Alabama 35040

877.334.9572 (toll-free)
challenge@2ab.com

14
Copyright 2005, 2AB Inc. All rights reserved.
All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

	September 2005
	Introduction
	What is the Java Authentication and Authorization Service?�
	Classification of Information
	Classification of People Who May be Required to Access Information
	Definition of GBAC Rules for Information Access
	Using JAAS Authentication as Part of a GBAC Solution
	A Patient Record Demonstration

	The CPR application uses the access manager as a software guard to provide access decisions before displaying any information related to patients. The policy is easily administered using tools that are simple to use and easy for business people to under
	Challenge 2AB!

