

1
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using jLock’s Java Authentication and Authorization Service (JAAS)
for Governance-Based Access Control (GBAC) in Healthcare

September 2005
www.2ab.com

Introduction

Access management is a simple concept. Every business has information that needs to be protected from
unauthorized disclosure. To protect information, companies define policies - often mandated by legislation
- that govern who can access specific classes of business and/or personal information. For example, if a
pharmacist seeks to access clinical data (such as medications) related to a person for whom they are filling
a prescription, they should have authorization to do so, however, they should not be authorized to access
the same information about a co-worker. There are many written policies (often laws) related to disclosure
of broad classes of clinical and personal information. But, often, individual data is not specifically
classified within electronic patient record systems. Today, most requests for patient information flows
through individuals within a provider or payer organization; the access policy that governs release of the
information is enforced only because human beings are skilled at generalizations; that is, they are able to
classify an ad hoc request for a particular piece of information about a patient and make a decision about
whether or not it should be released to the requestor.

Access Management software has a simple goal. It allows the human who previously acted as a guardian
of sensitive information to be removed from the process without loss of access control. This sounds
simple, but most providers and payers are struggling with the implementation of access management as
they integrate and extend their clinical and administrative applications. This is because machines cannot
classify information or make access decisions unless they are explicitly programmed with algorithms to
accomplish this. When you take the responsibility for access decisions away from human beings, it
becomes necessary to insert software guards into your applications.

Most companies now have governance councils that ensure that they are in compliance with legislated
requirements. To do this, sensitive information must be classified. In addition, the people who may need
access to the information need to be grouped (or assigned roles) for the purpose of establishing consistent,
auditable access policy. One company who assists health organizations in this effort - CGI - has recently
released a whitepaper, "Governance-Based Access Control: Enabling improved information sharing that
meets compliance requirements," introducing a new model for access control. This model, called
Governance-Based Access Control (GBAC), is focused on the classification of information assets for the
purpose of information sharing in an environment where:

• Many organizations may require access to information

• Information may be accessed by, or shared with, external users

• Everyone may be subject to compliance with multiple authorities and jurisdictions

In a previous whitepaper, "Using jLock's Java Authentication and Authorization Service (JAAS) for
Application-Level Security," we described a systematic approach to using JAAS to manage the complexity
associated with software access management. We explained the JAAS service-oriented architecture
(SOA), which maintains a clean separation of concerns between application functionality and access
management, and discussed the types of JAAS features that a scalable JAAS implementation should
support.

In this whitepaper, we explore Governance-Based Access Control (GBAC) concepts using scenarios from
the healthcare domain. We show how jLock, 2AB’s commercial JAAS implementation, can be used to
support the complex rule requirements of the Healthcare GBAC model. We hope this paper and the
demonstration programs will help you understand how JAAS can be leveraged for access management.

2
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

What is the Java Authentication and Authorization Service?

The Java Authentication and Authorization Service (JAAS) defines the standard programming interface for
building these software guards in a Java environment. Prior to JAAS, security mechanisms in Java were
strictly code-based. That is, you granted permissions based on the code that was running – there was no
way to grant permissions based on the identity (or credentials) of the user of the application. For this
reason, any user-based access control mechanisms had to be coded directly into the business application
(typically requiring new database tables and/or directory infrastructure). When access policy or audit
requirements changed, application software had to be modified, tested and redeployed. Additionally, when
access policy needs to be examined, or applications audited for conformance, a code review was required.

Access management solutions, such as commercial implementations of JAAS, provide scalable alternatives
to the costly embedding of access control mechanisms and access policy. They allow application software
guards to leverage services that enable access policy to be modified, tested and deployed dynamically
without application code changes. This enables your developers to concentrate on providing business
software. Access management solutions efficiently enable high performance access controls in distributed
environments while allowing centralized management of access policy. Any commercial access
management solution includes application programming interfaces (APIs) and policy management tools.
JAAS defines these APIs for the Java environment.

Application security must address any security-related requirements not provided by the runtime security
infrastructure. In the area of access management, any requirement to restrict a) the usage of application
features or b) access to business and personal information is part of “application security.” Often, these
restrictions on access to sensitive information are based on legislation. For this reason, the Governance-
Based Access Control Model is being progressed as a means to classify information for the purpose of
assigning access policy. The CGI whitepaper, "Governance-Based Access Control (GBAC)," provides an
excellent overview of this model and is the basis of the examples in this whitepaper.

There are many excellent overviews of JAAS on Sun’s JavaSoft Web site. For that reason, we will assume
the reader has some familiarity with the JAAS model, and we will focus on how the JAAS model can be
leveraged to provide the fine-grain access control requirements of “application security” in an environment
that uses the Governance-Based Access Control (GBAC) model.

JAAS consists of two parts: Authentication and Authorization

• Authentication answers the question: “How do I know that you are who you say you are?” The
goal of authentication is to securely determine who is executing Java code, regardless of whether
or not the code is part of a standalone Java application, a servlet, an applet or an Enterprise Java
Bean.

• Authorization answers the question: “Now that I know who you are, how do I know if you are
allowed to access the information or application feature that you are requesting?” The goal of
authorization is to protect business and personal information and sensitive application features
from being used by people who legitimately have access to the application and some subset of its
functionality.

There are a number of papers from various sources that focus on how to build an implementation of JAAS.
These papers explain in detail the concepts, design center and classes that are used in a JAAS
implementation. The classes include LoginContext, LoginModule, CallbackHandler, Subject, Principal,
Permission and AccessController. We will discuss those concepts in this paper as they become visible to
the Java programmer but will not discuss details of their implementation. This paper will focus on how a
Java developer uses a commercial implementation of JAAS in conjunction with the GBAC model. We will
introduce the jLock AccessManager which extends the JAAS model to support the context-sensitive policy
requirements of GBAC. We will also explore how user identity and access policies are managed using
jLock Security Center administrative tools. We will outline the steps you need to take to use jLock's JAAS
with the GBAC model.

3
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of Information

The classification of information assets based on Governance attributes is a key concept of the GBAC
model. Each classification of information is mapped to a JAAS resource or Permission. In the Java
Authentication and Authorization Service (JAAS) specification, this is a unique string. You would create
resources for each possible classification that needs to be protected using the CreateResource Editor as
shown below.

We are using generic classifications in this example; in
reality you might use terminology from a medical
vocabulary.

A unique string would need to be defined for each
information classification. As you will see later, you
can specify operations (such as "order" or "results") to
further classify the information asset.

In addition to using the graphical user interface, classifications may be entered programmatically or via
scripting.

We also support a more complex naming scheme if you want to give each classification a fully qualified
structural name. This might be useful if using medical vocabularies to classify information. To do this,
you would use the OMG’s Resource Access Decision (RAD) facility naming scheme. For some
applications, the complex naming is easier to understand. Here we will simply use JAAS permissions
which are strings.

Viewing the GBAC Information Classifications as JAAS Resources

This user interface is designed to precisely match the Java Authentication and Authorization Service where
Resource Permissions are defined as a string. We extend JAAS to allow multiple operations on a Resource.
For example, for a lab tests, you may set your operations as "order" and "reviewResults." For demographic
information, the only operation may be "access."

4
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of People Who May be Required to Access Information

The classification of people in GBAC is based on roles. These roles are defined by the healthcare
organization. In the Java Authentication and Authorization Service, a role is a type of Principal that may
be assigned to Subjects or Groups. The following shows the roles used in this demonstration.

Examples of Healthcare Roles

Groups can also be very useful, and roles may be assigned to Groups as shown below.

Assigning roles to groups

EmergencyRecordProvider role will be assigned to anyone in the Group MedicAlert

5
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Of course, you will also need to define Users. The Identity Manager in jLock also allows you to create
users and assign passwords. Password format requirements can be set using the Preferences menu. We
can use the Identity Manager Users tab to assign roles to our users. For this demo, we assign roles as
follows: Bill Banks is a Physician, Ed Harris is an EmergencyRecordProvider (because of association with
group MedicAlert) and Nancy Nurse is a Nurse and an EmergencyCareProvider.

Bill Banks has the Role Physician and is in the Group PhysicianGroup1

The Role view allows you to see who is assigned a Role

6
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Definition of GBAC Rules for Information Access

Access Control rules may be defined in Governance-Based Access Control (GBAC) based upon the roles
of individuals, relationships between the requestor and the information source (i.e. attending physician)
and/or the context within which information is requested (i.e. emergency). These rules will have to be
defined for each health organization.
By selecting a Resource (information classification) operation, you can modify the policy as shown below.
Note that jLock allows you to specify rules for different operations on Resources. For example, you see
below that there are order and reviewResults operations on the HIV resource. These operations can be
customized for each Resource (class of information).

Because GBAC often requires decisions to be based on context or relationship-based information that can
only be evaluated at the time of the access request (as it may change dynamically), our demonstration will
make use of a dynamic attribute service. Dynamic attributes are "groups" or "roles" that are assigned
dynamically to a user at the time of the access request. For example, there may be information that is
provided to an "attending physician" that is not available to other healthcare workers (even if they are
physicians). In this demonstration, physicians will be provided a view that only includes the patients for
which they are the attending physician. The access policy for patient information is based on the
AttendingPhysician role. This role is dynamically associated with the physician at the time of the access
request. Because dynamic attribution of roles and/or groups is a part of the access management service,
they are easily audited and maintained separate from the business application. Access policy remains
simple, easy to understand, administer and audit.

7
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using JAAS Authentication as Part of a GBAC Solution

JAAS authentication is based on the Pluggable Authentication Module (PAM) architecture. Leveraging an
architecture that supports ‘plug-ins’ for authentication ensures that Java applications can be independent of
the underlying authentication mechanism. This has the advantage that new or revised authentication
mechanisms can be plugged in without modifying the application code. That is, management of User IDs
and Passwords (or other methods of authentication) are removed from the application’s concern. For this
example, we will leverage the dialog-based User ID and Password authenticator that is supplied with the
jLock product.

The first thing you need to do is specify the JAAS implementation that you are using. This is done with a
login configuration file. This may be done on the command line when you invoke your application.

java -Djava.security.auth.login.config=config.txt …

The jaas_config.txt file, supplied with the example, is shown below. It specifies an application name
(JaasDemo) and the jLock plug-in class for the LoginModule. We are also specifying the instance name of
the Security Center repository that holds identity and policy information.

/** Login Configuration for the GBAC JAAS Demo Applications **/

JaasDemo
{
 com.twoab.jaas.LoginModuleUP required instance="cpr";
};

 JAAS Login Configuration File (jaas_config.txt)

This is the Java code for a class that prints “Hello iLock World” if user authentication succeeds. The two
JAAS methods your application needs to invoke to use a JAAS authenticator are shown in bold font.

 public HelloJAAS() {
 LoginContext lc = null;

 /** Create a LoginContext object. */
 try {
 lc = new LoginContext("JaasDemo", new DialogCallbackHandlerUP());

 } catch (LoginException le) {
 System.out.println("Cannot create LoginContext. " + le.getMessage());
 System.exit(1);
 } catch (SecurityException se) {
 System.out.println("Cannot create LoginContext. " + se.getMessage());
 System.exit(-1);
 }

 try {
 lc.login();
 }
 catch (LoginException le) {
 System.out.println("\nAuthentication failed:");
 System.out.println(" " + le.getMessage());
 System.exit(1);
 }
 System.out.println("\nHello iLock World!\n"); ……

 JAAS Authentication Code Sample (HelloJAAS.java)

That is all the code and configuration you need! When you run the example (runHello.bat), at the point
where the lc.login() is called, the following dialog will appear.

8
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Type in a User ID and Password as shown above and click OK. jLock will authenticate the user.

Assuming you typed a valid User ID and Password, the example program results will, as you might expect,
look like the following:

Authentication Succeeded

Of course, if you should fail to provide a valid User ID and/or Password, you will see this:

Authentication Failed

The HelloJAAS demo program has obviously written no Java code to manage Users or Passwords, or to do
the work required to authenticate the user (in this case verify the password). That is the great thing about
the JAAS architecture; just “plug in” jLock, and it securely manages all that for you! jLock also ensures
that the password is never available in clear text. jLock securely stores and transmits password information
- even if you are not using an encrypted transport protocol.

9
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Now we are ready to explore JAAS authorization. To understand the JAAS Authorization model, you must
first understand a little more about what happens when you authenticate using JAAS. When the user
(bbanks in the example above) was authenticated, a Subject object was created. A Subject represents the
entity that was authenticated – that is, the entity that has been able to prove their identity. A Java Principal
is a “security attribute” or “credential” that can be associated with one or more Subjects. During the
authentication process, the jLock authenticator acquired the credentials of the Subject and associated them
with the subject by creating the appropriate Principal objects. A user (i.e. Subject) may always be able to
prove their identity, but their credentials (i.e. Principals) may change over time. For this reason, security
access policy is defined in terms of the security attributes (or in Java terminology Principals) that are
associated with the Subject at the time identity was authenticated. jLock supports three types of Principals:
1) AccessIdPrincipal, 2) RolePrincipal and 3) GroupPrincipal. These map to the UserIds, Groups and
Roles shown in the Identity Manager. These are the fundamental building blocks of access policy. In the
section above, you can see that the user, Bill Banks, has the following jLock security attributes.

• AccessId: bbanks

• Role: Physician

• Group: PhysicianGroup1

If you add the following code to the example, you can see that the LoginContext allows navigation to a
Subject that manages a set of Principals.

……
 java.util.Set prin_set = lc.getSubject().getPrincipals();
 java.util.Iterator it = prin_set.iterator();
 while (it.hasNext() == true) {
 java.lang.Object obj = it.next();
 if (obj instanceof AccessIdPrincipal) {
 System.out.println("AccessId - " +
 ((AccessIdPrincipal)obj).getName());
 }
 else if (obj instanceof GroupPrincipal) {
 System.out.println("Group - " +
 ((GroupPrincipal)obj).getName());
 }
 else if (obj instanceof RolePrincipal) {
 System.out.println("Role - " +
 ((RolePrincipal)obj).getName());
 }
 else {
 System.out.println("Unknown principal type");
 }
 }

 Code to display the names of the Principals associated with the authenticated Subject

Running with this code, you will see the output below following authentication:

10
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Extending JAAS Authorization for CPR GBAC

The JAAS Authorization model extends the code-centric, Java security architecture that uses a security
policy to specify what access is granted to executing code (such as access to files, sockets or specific
operations). The extension allows security access policy to be defined based on the credentials associated
with the user of the code. Just as a commercial JAAS Authentication may be plugged in, the JAAS
Authorization model also allows vendors to offer commercial solutions that offer scalability, management
and enhanced support for sophisticated access policy.

There are limitations in the JAAS Authorization model in Sun's reference implementation. For example,
Sun’s reference implementation requires that grant statements that define access policy be placed in policy
files for each user and that the application use the Java Security Manager (in the same way that grant
statements and policy files are used for code-centric security). Since it obviously is not practical (or
secure) to manage user-based access policy in local, plain-text files for a large user community, JAAS
providers such as 2AB offer solutions that allow identity and access policy to be managed separately from
the application. Sun’s reference implementation also requires that any code that requires user-based access
control be placed in a separate class and executed only via Subject.doAs (or doAsPrivileged) methods.
That sets the scope of the user-based software guard to the class where the sensitive code is located. jLock
does not preclude the use of the do.As operations for access management but does support the insertion of
software guards that use the JAAS Principal-based authorization model without the requirement to segment
the code into separate classes. Notice that while we can certainly run this application with the Java
Security Manager installed (adding a few permissions to the java.policy file), this demo does not require
the Security Manager to leverage the jLock JAAS features. You simply insert your sensitive code in a try
block and check for the appropriate permission before running it. Remember, you are not checking
whether the code has access to the resource, you are only checking whether or not the application should
provide the resource to the user.

jLock supports the use of the JAAS AccessController for checking access permissions and also provides a
more powerful AccessManager that enables relationship-based and context sensitive polices to be
supported. Note that after the user has authenticated, it is still necessary to determine if the user has
permission to access patient information. The code snippets below show use of the AccessController and
the more powerful AccessManager (which allows custom actions such as "order" and "reviewResults.")

 String gbac_class = new String("Demographics");
 try {
 ResourcePermission p = new ResourcePermission(gbac_class);
 AccessController.checkPermission(p);
 System.out.println("Access to " + gbac_class + " Info is granted");
 }
 catch (com.twoab.jaas.AccessControlException ace) {
 System.out.println("Sorry - Access to " + info_class + " Info is denied");
 }

 Code to protect access to the “Demographics” information
 using a JAAS AccessController

 String gbac_class = new String("HIV");

 JaasResource jr = new JaasResource (gbac_class);
 if (am.accessAllowed(jr, "reviewResults", lc.getSubject())) {
 System.out.println("Granted access to " + jr.toString() + " Info");
 } else {
 System.out.println("Denied access to " + jr.toString() + " Info ");
 }

 Code to protect access to the “HIV” lab results
 using a jLock AccessManager with custom operations

A Patient Record Demonstration

Next, we want to show how you might build an application that integrates patient demographic and clinical
data while only displaying the information that a user is authorized to view. We call this demonstration
program the “County General - Patient Record System.” The source code for the demonstration program
below is freely available.

When Bill Banks, a Physician, logs into the system, a custom view of patient information is generated.
Note that he is only allowed to view information that he is authorized to see. That is, there may be
information in the database, based on the GBAC rules, that he is not authorized to view. The portal
dynamically constructs the user view based upon the results of consultation with a GBAC access controller.
To change the information available, no code is written – the GBAC rules are simply changed using the
graphical administration tools provided to the security administrator.

 Information Authorized for Bill Banks, a Physician

Here is the line of code (Guard) that is inserted into the application to determine whether or not to display a
patient in the tree. A similar access control check is made on each document type to determine the
information to display under the patient. In this way, the access policy remains separate from the
application and can be modified dynamically using the policy administrative tools shown earlier in this
paper.

boolea
view =

n view = true;
 am.accessAllowed(patient.toResource(),operation,lm.getSecurityAttributes());
11
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

 Code in prototype to determine whether or not a patient can be viewed by the user

12
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Below we see the same portal when Nancy Nurse, a nurse, is logged in. Notice that the nurse has access to
more patients in her view as she may be assisting multiple physicians. If you select test results for a
patient, however, access to those results may be restricted. For example, the nurse can see that an HIV test
has been ordered, but is not allowed access to the results.

 Patient View based on authorization for Nancy Nurse, a Nurse

 Message received when Nancy Nurse tries to view HIV results

You may have also noticed that some of the patient names are not shown (they are identified only by a
PID#). The AccessManager is also consulted regarding whether or not to display patient names on the
graphical user interface.

 if (patient.isVIP()) {
 vip = am.accessAllowed(vipResource,operation,lm.getSecurityAttributes())
 ……… set up name or id in display based on access decision ………..
 }
 Code in prototype to decide whether or not user is allowed to view a patient name

The CPR application uses the access manager as a software guard to provide access decisions before
displaying any information related to patients. The policy is easily administered using tools that are simple
to use and easy for business people to understand.

13
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Summary

In this paper we have outlined how the jLock JAAS service can be used to implement a Service Oriented
Architecture for application-level security that meets the unique requirements of Governance-Based Access
Control in Healthcare.

The trend towards a service-oriented architectural approach to dealing with application-level security is
evident in recent analyst reports. For example:

META Group predicted in late 2003: “as businesses begin to put more focus on
design for application securability and service oriented architecture, application-

specific security mechanisms will migrate to infrastructure.”

A JAAS implementation such as jLock provides APIs that enable you to authenticate and easily integrate
access control checks within your business applications. JAAS supports a pluggable architecture that
allows you to select your JAAS vendor based upon your requirements for authentication and access policy
support.

Utilizing JAAS, your business developers simply insert AccessController or AccessManager calls
(Software Guards) at the points in the software where sensitive resources are exposed. This Guard consults
with the jLock Access Manager who evaluates the policy and advises the Guard on allowing access.

The JAAS architecture enables many different policy models to be leveraged by a Java business
application.

 JAAS supports a service-oriented architecture for authentication and authorization

14
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Challenge 2AB!

Are you still not sure if jLock can help with your Governance-based access control requirements?
Challenge us to prove it. Send us four or five examples of your access management requirements. We’ll
configure jLock with policies you can use and send you an evaluation copy of jLock, complete with a
working demo so you can see how to leverage jLock within your application. We’ll even send you the
source code for the demo so your development staff can take a look at exactly how little we had to do to
insert a guard! Go ahead… challenge us. What have you got to lose – an increasingly difficult access
management problem?

2AB, Inc.
1700 Highway 31
Calera, Alabama 35040

877.334.9572 (toll-free)

challenge@2ab.com

	September 2005
	Introduction
	What is the Java Authentication and Authorization Service?�
	Classification of Information
	Classification of People Who May be Required to Access Information
	Definition of GBAC Rules for Information Access
	Using JAAS Authentication as Part of a GBAC Solution
	A Patient Record Demonstration

	The CPR application uses the access manager as a software guard to provide access decisions before displaying any information related to patients. The policy is easily administered using tools that are simple to use and easy for business people to under
	Challenge 2AB!

