

1
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using jLock’s Java Authentication and Authorization Service (JAAS)
for Governance-Based Access Control (GBAC)

August 2005
www.2ab.com

Introduction

Access management is a simple concept. Every business has information that needs to be protected from
unauthorized disclosure. To protect information, companies define policies - often mandated by legislation
- that govern who can access specific classes of business and/or personal information. For example, if a
police investigator seeks to access transaction data related to a suspected terrorist from a private bank, they
should have authorization to do so, however, they should not be authorized to access the same information
about s omeone who is not suspected of any illegal activity. That is, there is a policy that specifically
governs the release of information collected about individuals to other individuals . Or is there? The
answer today is: “Probably not.” What does exist are written policies (or a law) related to disclosure of
broad classes of business and personal information. But, often, individual data is not specifically classified
within organizations. Requests for information flow through individuals within an organization. The
policy is enforced only because human beings are skilled at generalizations; that is, we expect someone in
authority to be able to classify an ad hoc request for a particular piece of information and make a decision.

Access Management software has a simple goal. It allows the human who previously acted as a guardian
of sensitive information to be removed from the process without loss of access control. This sounds
simple, but most businesses are struggling with the implementation of access management as they integrate
and extend their applications. This is because machines cannot classify information or make access
decisions unless they are explicitly programmed with algorithms to accomplish this. When you take the
responsibility for access decisions away from human beings, it becomes necessary to insert software guards
into your applications.

CGI has recently released a whitepaper, "Governance-Based Access Control: Enabling improved
information sharing that meets compliance requirements," introducing a new model for access control.
This model, called Governance-Based Access Control (GBAC), is focused on the classification of
information assets for the purpose of information sharing in an environment where:

• Many organizations may require access to information

• Information may be accessed by, or shared with, external users

• Everyone may be subject to compliance with multiple authorities and jurisdictions

In a previous whitepaper, "Using jLock's Java Authentication and Authorization Service (JAAS) for
Application-Level Security," we described a systematic approach to using JAAS to manage the complexity
associated with software access management. We explained the JAAS service-oriented architecture
(SOA), which maintains a clean separation of concerns between application functionality and access
management, and discussed the types of JAAS features that a scalable JAAS implementation should
support.

In this whitepaper, we explore the Governance-Based Access Control (GBAC) model and use the scenarios
presented in the CGI whitepaper as the basis of the sample access policy and the coding examples. We
show how jLock, 2AB’s commercial JAAS implementation, can be used to support the complex rule
requirements of the GBAC model. In a complementary whitepaper, we explore an alternative model, the
OMG's Resource Access Decision (RAD) facility, to support GBAC. We hope these papers will help you
understand the GBAC model and how existing standards and tools can be leveraged to implement it.

2
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

What is the Java Authentication and Authorization Service?

The Java Authentication and Authorization Service (JAAS) defines the standard programming interface for
building these software guards in a Java environment. Prior to JAAS, security mechanisms in Java were
strictly code-based. That is, you granted permissions based on the code that was running – there was no
way to grant permissions based on the identity (or credentials) of the user of the application. For this
reason, any user-based access control mechanisms had to be coded directly into the business application
(typically requiring new database tables and/or directory infrastructure). When access policy or audit
requirements changed, application software had to be modified, tested and redeployed. Additionally, when
access policy needs to be examined, or applications audited for conformance, a code review was required.

Access management solutions, such as commercial implementations of JAAS, provide scalable alternatives
to the costly embedding of access control mechanisms and access policy. They allow application software
guards to leverage services that enable access policy to be modified, tested and deployed dynamically
without application code changes. This enables your developers to concentrate on providing business
software. Access management solutions efficiently enable high performance access controls in distributed
environments while allowing centralized management of access policy. Any commercial access
management solution includes application programming interfaces (APIs) and policy management tools.
JAAS defines these APIs for the Java environment.

Application security must address any security-related requirements not provided by the runtime security
infrastructure. In the area of access management, any requirement to restrict a) the usage of application
features or b) access to business and personal information is part of “application security.” Often these
restrictions on access to sensitive information are based on legislation. For this reason, the Governance-
Based Access Control Model is being progressed as a means to classify information for the purpose of
assigning access policy. The CGI whitepaper, "Governance-Based Access Control (GBAC)," provides an
excellent overview of this model and is the basis of the examples in this whitepaper.

There are many excellent overviews of JAAS on Sun’s JavaSoft Web site. For that reason, we will assume
the reader has some familiarity with the JAAS model, and we will focus on how the JAAS model can be
leveraged to provide the fine-grain access control requirements of “application security” in an environment
that uses the Governance-Based Access Control (GBAC) model.

JAAS consists of two parts: Authentication and Authorization

• Authentication answers the question: “How do I know that you are who you say you are?” The
goal of authentication is to securely determine who is executing Java code, regardless of whether
or not the code is part of a standalone Java application, a servlet, an applet or an Enterprise Java
Bean.

• Authorization answers the question: “Now that I know who you are, how do I know if you are
allowed to access the information or application feature that you are requesting?” The goal of
authorization is to protect business and personal information and sensitive application features
from being used by people who legitimately have access to the application and some subset of its
functionality.

There are a number of papers from various sources that focus on how to build an implementation of JAAS.
These papers explain in detail the concepts, design center and classes that are used in a JAAS
implementation. The classes include LoginContext, LoginModule, CallbackHandler, Subject, Principal,
Permission and AccessController. We will discuss those concepts in this paper as they become visible to
the Java programmer but will not discuss details of their implementation. This paper will focus on how a
Java developer uses a commercial implementation of JAAS in conjunction with the GBAC model. We will
introduce the jLock AccessManager which extends the JAAS model to support the context -sensitive policy
requirements of GBAC. We will also explore how user identity and access policies are managed using
jLock Security Center administrative tools. We will outline the steps you need to take to use jLock's JAAS
with the GBAC model.

3
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of Information

The classification of information assets is based on Governance attributes as outlined in Table 1 of the
GBAC whitepaper. Each classification of information is mapped to a JAAS resource or Permission. In the
Java Authentication and Authorization Service (JAAS) specification, this is a unique string. You would
create resources for each possible classification that needs to be protected using the Create Resource Editor
as shown below.

A unique string would need to be defined for each information classification.

We also support a more complex naming scheme if you want to give each classification a fully qualified
structural name. To do this, you would use the OMG’s Resource Access Decision (RAD) facility naming
scheme. In addition to using the graphical user interface, classifications may be entered programmatically
or via scripting.

In the screen shot shown below, we have defined a resource for each information classification listed in
Table 1 of the GBAC Whitepaper.

Viewing the GBAC Information Classifications as JAAS Resources

This user interface is designed to precisely match the Java Authentication and Authorization Service where
Resource Permissions are defined as a string.

4
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Classification of People Who May be Required to Access Information

The classification of people in GBAC is based on roles. These roles are defined in Figure 4 in the GBAC
whitepaper. In the Java Authentication and Authorization Service, a role is a type of Principal that may be
assigned to Subjects or Groups. The following shows the roles as defined in the GBAC Whitepaper for
each organization.

Examples of GBAC Roles

If desired, groups could also be defined as shown below:

Examples of GBAC Groups

5
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Of course, you will also need to define Users. The Identity Manager in jLock also allows you to create
users and assign passwords. Password format requirements can be set using the Preferences menu. We
can use the Identity Manager Users tab to assign roles to our users. We assign GBAC roles as follows:
John Davis is a Compliance Officer, Mary Jones is an Intelligence Analyst and James Howard is a Police
Investigator.

James Howard has the Role PoliceInvestigator and is in the Group FederalPoliceAgency

The Role view allows you to see who is assigned a Role

6
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Definition of GBAC Rules for Information Access

Access Control rules are defined in GBAC based upon the roles of individuals and context information
related to the information. The rules we define below are outlined in Table 2 of the GBAC whitepaper.
By selecting a Resource (these are the GBAC classifications) operation, you can modify the policy as
shown below. Note that jLock allows you to specify rules for different operations on Resources (the
GBAC classification). For example, you see that there are access and update rules which may be defined
differently.

Because GBAC requires context information be provided at the time of the access request, an entitlement
rule is added. Entitlement rules allow the program to pass context information at the time of the access
request. This information is evaluated as part of the policy. For example, the scenario in the GBAC
whitepaper has two different examples of this. Some of the rules are scoped to information regarding
someone with the Subject Name of "John Doe" as shown above. In another GBAC rule, the transaction
amount of a deposit must be greater than $10,000. This type of policy is an example of what jLock calls
entitlement rules. The JAAS model of authorization has no mechanism for supporting this type of rule.
For this reason, jLock has extended JAAS to enable complex, context -sensitive and entitlement-based
policies. Entitlement rules are supported in the Power Edition of jLock.

7
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Here is how the entitlement rule would be specified using the Entitlement Editor:

In English the policy defined in the two screens shown above would read:

Anyone who has been assigned the role "PoliceInvestigator" is allowed access (to the named
resource) with the constraint that the "SubjectName" (which is of data type String) is Equal to
"John Doe."

To create multiple constraints, you must define multiple entitlement rules. The demo that we are providing
also includes policy for access to the resource TransactionDataSuspiciousDeposit that includes mu ltiple
entitlement rules as follows:

Anyone who has been assigned the role "IntelligenceAnalyst" is allowed access (to the named
resource) with the constraint that the "TranType" (which is of data type String) is Equal to "Cash"
and the "Amount" (which is of data type Decimal) is Greater Than 10000.

The Entitlement rule would be defined in the editor as shown below.

Example of defining multiple entitlements to an access rule

8
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Using JAAS Authentication as Part of a GBAC Solution

JAAS authentication is based on the Pluggable Authentication Module (PAM) architecture. Leveraging an
architecture that supports ‘plug-ins’ for authentication ensures that Java applications can be independent of
the underlying authentication mechanism. This has the advantage that new or revised authentication
mechanisms can be plugged in without modifying the application code. That is, management of User IDs
and Passwords (or other methods of authentication) are removed from the application’s concern. For this
example, we will leverage the dialog-based User ID and Password authenticator that is supplied with the
jLock product.

The first thing you need to do is specify the JAAS implementation that you are using. This is done with a
login configuration file. This may be done on the command line when you invoke your application.

java -Djava.security.auth.login.config=config.txt …

The jaas_config.txt file, supplied with the example, is shown below. It specifies an application name
(JaasDemo) and the jLock plug-in class for the LoginModule. We are also specifying the instance name of
the Security Center repository that holds identity and policy information.

/** Login Configuration for the GBAC JAAS Demo Applications **/

JaasDemo
{
 com.twoab.jaas.LoginModuleUP required instance="cgi";
};

 JAAS Login Configuration File (jaas_config.txt)

This is the Java code for a class that prints “Hello iLock World” if user authentication succeeds. The two
JAAS methods your application needs to invoke to use a JAAS authenticator are shown in bold font.

 public HelloJAAS() {
 LoginContext lc = null;

 /** Create a LoginContext object. */
 try {
 lc = new LoginContext("JaasDemo", new DialogCallbackHandlerUP());

 } catch (LoginException le) {
 System.out.println("Cannot create LoginContext. " + le.getMessage());
 System.exit(1);
 } catch (SecurityException se) {
 System.out.println("Cannot create LoginContext. " + se.getMessage());
 System.exit(-1);
 }

 try {
 lc.login();
 }
 catch (LoginException le) {
 System.out.println("\nAuthentication failed:");
 System.out.println(" " + le.getMessage());
 System.exit(1);
 }
 System.out.println("\nHello iLock World!\n"); ……

 JAAS Authentication Code Sample (HelloJAAS.java)

That is all the code and configuration you need! When you run the example (runDialog.bat), at the point
where the lc.login() is called, the following dialog will appear.

9
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Type in a User ID and Password as shown above and click OK. jLock will authenticate the user.

Assuming you typed a valid User ID and Password, the example program results will, as you might expect,
look like the following:

Authentication Succeeded

Of course, if you should fail to provide a valid User ID and/or Password, you will see this:

Authentication Failed

The HelloJAAS demo program has obviously written no Java code to manage Users or Passwords, or to do
the work required to authenticate the user (in this case verify the password). That is the great thing about
the JAAS architecture; just “plug in” jLock, and it securely manages all that for you! jLock also ensures
that the password is never available in clear text. jLock securely stores and transmits password information
- even if you are not using an encrypted transport protocol.

10
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Now we are ready to explore JAAS authorization. To understand the JAAS Authorization model, you must
first understand a little more about what happens when you authenticate using JAAS. When the user
(mjones in the example above) was authenticated, a Subject object was created. A Subject represents the
entity that was authenticated – that is, the entity that has been able to prove their identity. A Java Principal
is a “security attribute” or “credential” that can be associated with one or more Subjects. During the
authentication process, the jLock authenticator acquired the credentials of the Subject and associated them
with the subject by creating the appropriate Principal objects. A user (i.e. Subject) may always be able to
prove their identity, but their credentials (i.e. Principals) may change over time. For this reason, security
access policy is defined in terms of the security attributes (or in Java terminology Principals) that are
associated with the Subject at the time identity was authenticated. jLock supports three types of Principals:
1) AccessIdPrincipal, 2) RolePrincipal and 3) GroupPrincipal. These map to the UserIds, Groups and
Roles shown in the Identity Manager. These are the fundamental building blocks of access policy. In the
section above, you can see that the user, Mary Jones, has the following jLock security attributes.

• AccessId: mjones

• Role: IntelligenceAnalyst

• Group: FederalFinancialReporting&AnalysisCentre

If you add the following code to the example, you can see that the LoginContext allows navigation to a
Subject that manages a set of Principals.

……
 java.util.Set prin_set = lc.getSubject().getPrincipals();
 java.util.Iterator it = prin_set.iterator();
 while (it.hasNext() == true) {
 java.lang.Object obj = it.next();
 if (obj instanceof AccessIdPrincipal) {
 System.out.println("AccessId - " +
 ((AccessIdPrincipal)obj).getName());
 }
 else if (obj instanceof GroupPrincipal) {
 System.out.println("Group - " +
 ((GroupPrincipal)obj).getName());
 }
 else if (obj instanceof RolePrincipal) {
 System.out.println("Role - " +
 ((RolePrincipal)obj).getName());
 }
 else {
 System.out.println("Unknown principal type");
 }
 }

 Code to display the names of the Principals associated with the authenticated Subject

Running with this code, you will see the output below following authentication:

11
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Extending JAAS Authorization for GBAC

The JAAS Authorization model extends the code-centric, Java security architecture that uses a security
policy to specify what access is granted to executing code (such as access to files, sockets or specific
operations). The extension allows security access policy to be defined based on the credentials associated
with the user of the code. Just as a commercial JAAS Authentication may be plugged in, the JAAS
Authorization model also allows vendors to offer commercial solutions that offer scalability, management
and enhanced support for sophisticated access policy.

There are limitations in the JAAS Authorization model in Sun's reference implementation. For example,
Sun’s reference implementation requires that grant statements that define access policy be placed in policy
files for each user and that the application use the Java Security Manager (in the same way that grant
statements and policy files are used for code-centric security). Since it obviously is not practical (or
secure) to manage user-based access policy in local, plain-text files for a large user community, JAAS
providers such as 2AB offer solutions that allow identity and access policy to be managed separately from
the application. Sun’s reference implementation also requires that any code that requires user-based access
control be placed in a separate class and executed only via Subject.doAs (or doAsPrivileged) methods.
That sets the scope of the user-based software guard to the class where the sensitive code is located. jLock
does not preclude the use of the do.As operations for access management but does support the insertion of
software guards that use the JAAS Principal-based authorization model without the requirement to segment
the code into separate classes. Notice that while we can certainly run this application with the Java
Security Manager installed (adding a few permissions to the java.policy file), this demo does not require
the Security Manager to leverage the jLock JAAS features. You simply insert your sensitive code in a try
block and check for the appropriate permission before running it. Remember, you are not checking
whether the code has access to the resource, you are only checking whether or not the application should
provide the resource to the user.

jLock supports the use of the JAAS AccessController for checking access permissions and also provides a
more powerful AccessManager that enables entitlement-based polices (such as those defined in the GBAC
whitepaper) to be supported. Note that after the user has authenticated, it is still necessary to determine if
the user has permission to access IntelligenceDataProtectedB information. The code snippets below show
use of the AccessController and the more powerful AccessManager.

 String gbac_class = new String("IntelligenceDataProtectedB);
 try {
 ResourcePermission p = new ResourcePermission(gbac_class);
 AccessController.checkPermission(p);
 System.out.println("Access to " + gbac_class + " Info is granted");
 }
 catch (com.twoab.jaas.AccessControlException ace) {
 System.out.println("Sorry - Access to " + info_class + " Info is denied");
 }

 Code to protect access to the “IntelligenceDataProtectedB” information
 using a JAAS AccessController

 EntitlementData ed = new EntitlementData[1];
 ed[0] = new EntitlementData("SubjectName", "John Doe");
 String gbac_class = new String("IntelligenceDataProtectedB);

 JaasResource jr = new JaasResource (gbac_class);
 if (am.accessAllowed(jr, "access", lc.getSubject(), ed)) {
 System.out.println("Granted access to " + jr.toString() + " Info");
 } else {
 System.out.println("Denied access to " + jr.toString() + " Info ");
 }

 Code to protect access to the “IntelligenceDataProtectedB” information
 using a jLock AccessManager with Entitlement context data

12
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

It is that simple to add GBAC authorization to your application. We have provided simple demonstration
programs as well as a full prototype so that you can run to see how this works. When you run the simple
demo and authenticate using mjones as the User ID, you will see the following dialog showing the
resources that Mary Jones , an IntelligenceAnalyst is allowed to access (sample code sets subject John Doe,
transaction type of cash and amount of $12,000).

Mary Jones, an IntelligenceAnalyst, requesting access to John Doe's information

However, if you run the demo and authenticate using jhoward as the User ID, you will see that James
Howard, a PoliceInvestigator, is allowed to access the following classes of information:

James Howard, a Police Investigator, requesting access to John Doe's information

All of the tools for creating and managing the access policy are provided by jLock. The jLock architecture
supports dynamic policy updates that take effect immediately, so applications do not need to be restarted
when access policies change. jLock also supports remote policy administration.

13
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

A GBAC Demonstration Based on the CGI Whitepaper

Next we want to show how you might build an application that integrates intelligence data, investigative
data and transaction data while only displaying the information that a user is authorized to view. We call
this demonstration program the “Terrorist Information Portal.” The source code for the demonstration
program below is freely available.

When Mary Jones, an Intelligence Analyst, logs into the system, she is provided access to information
sorted by the agency that owns it. Note that she is only allowed to view information that she is authorized
to see. That is, there may be more information in the database, based on the GBAC rules, that she is not
authorized to view. That is, the portal dynamically constructs the user view based upon the results of
consultation with a GBAC access controller. To change the information available, no code is written – the
GBAC rules are simply changed using the graphical administration tools provided to the security
administrator.

 Information Authorized for Mary Jones, an Intelligence Analyst

Here is the line of code (Guard) that is inserted into the application to determine whether or not to display
an agency in the tree. A similar access control check (which also passes entitlement information, such as
the SubjectName and Amount) is made on each document type to determine the documents to displayed
under the agency. In this way, the access policy remains separate from the application and can be modified
dynamically using the policy administrative tools shown earlier in this paper.

 Code in prototype to determine whether or not an agency can be viewed by the user

boolean view = true;
view = am.accessAllowed(agency.toResource(),operation,lm.getSecurityAttributes());

14
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Below we see the same portal when John Davis, a Compliance Officer, is logged in. Notice that
information is not shared with the Private Sector Financial Institution and so John’s view does not even
include those agencies.

 Information Authorized for John Davis, a Compliance Officer

And finally we look at the view of a Police Investigator.

 Information Authorized for James Howard, a Police Investigator

15
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Summary

In this paper we have outlined how the jLock JAAS service can be used to implement a Service Oriented
Architecture for application-level security that meets the unique requirements of Goverance-Based Access
Control as defined by CGI in their GBAC whitepaper.

The trend towards a service-oriented architectural approach to dealing with application-level security is
evident in recent analyst reports. For example:

META Group predicted in late 2003: “as businesses begin to put more focus on
design for application securability and service oriented architecture, application-

specific security mechanisms will migrate to infrastructure.”

A JAAS implementation such as jLock provides APIs that enable you to authenticate and easily integrate
access control checks within your business applications. JAAS supports a pluggable architecture that
allows you to select your JAAS vendor based upon your requirements for authentication and access policy
support.

Utilizing JAAS, your business developers simply insert AccessController or AccessManager calls
(Software Guards) at the points in the software where sensitive resources are exposed. This Guard consults
with the jLock Access Manager who evaluates the policy and advises the Guard on allowing access.

The JAAS architecture enables many different policy models to be leveraged by a Java business
application.

JAAS supports a service-oriented architecture for authentication and authorization

16
Copyright 2005, 2AB Inc. All rights reserved.

All trademarks, trade names, service marks and logos referenced herein belong to their respective companies.

Challenge 2AB!

Are you still not sure if jLock can help with your GBAC requirements? Challenge us to prove it. Send us
four or five examples of your access management requirements. We’ll configure jLock with policies you
can use and send you an evaluation copy of jLock, complete with a working demo so you can see how to
leverage jLock within your application. We’ll even send you the source code for the demo so your
development staff can take a look at exactly how little we had to do to insert a guard! Go ahead…
challenge us. What have you got to lose – an increasingly difficult access management problem?

2AB, Inc.
1700 Highway 31
Calera, Alabama 35040

877.334.9572 (toll-free)

challenge@2ab.com

